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One-dimensional walls in liquid crystals

M. Simoes®
Departamento de Fisica, Universidade Estadual de Londrina, Campus Universitario, 86051-970 Londrina, PR, Brazil
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We study the geometry of the matter flow which leads to the formation of one-dimensional walls above the
magnetic Fredericksz threshold in some nematic materials. The corresponding anisotropic Navier-Stokes
equation, subject to the appropriate boundary conditions, is solved. We show analytically that the one-
dimensional nature of the observed walls arises from the combination of the planar geometry of the director,
imposed before the magnetic field is turned on, the anisotropic viscosity of the nematic material, and the
saturated profile of the director along the direction of the magnetic field. The matter flow along the direction
perpendicular to the magnetic field is analytically studied, and the conditions that restrict it to the edge of the
sample are shown. The influence of this transverse flow of matter on the bending profile of the director is also
analyzed[S1063-651X97)10509-9

PACS numbsg(s): 61.30.Gd, 61.30.Jf, 64.70.Md

[. INTRODUCTION still to be carried out. Furthermore, it has been observed that
walls formed under these conditions are one dimensional.
Walls are the structures usually found in nematic liquidBut what are the characteristics of the system that make these
crystals(NLC's), formed under the action of an external field striking patterns possible? Lonbeggal. stressed the role of
[1] that makes the transition between adjacent symmetricdhe anisotropy in the viscosity coefficients. In the present
distorted textures. They have been widely investigated fron$tudy we stress the importance of the director profile along
both theoretical and experimental points of viggw-9]. Their  the direction of the magnetic field. We will solve the aniso-
practical importance, besides being typical examples of textopic linear Navier-Stokes equation with the appropriated
tures in NLC's, lies on the fact that under simple experimenboundary conditions, supposing that the matter movement is
tal conditions the measurements of their parameters caf¢stricted to the plane of the sample. With this solution we
show the elastic constant values as well as the magnetic su4ill be able to study the director bending profile throughout

ceptibility of the NLC[10,11]. the sample.
When a magnetic field is used as the external inductor,
t_hese walls arise from the combined action of the external Il. EUNDAMENTALS
field and the matter movement that happens as soon as the
magnetic field is turned on above the &dericksz threshold. Considering that NLC'’s can be described by a continuum

In a remarkable work, Lonbergt al. [5] showed how this model whose elastic energy is given by the Frank free energy
interesting mechanism works: the external magnetic field rof1], and whose motion is described by the so-called Ericksen,
tates the director stimulating the fluid flow, which in turn Leslie, and ParodiELP) approact1,15,164, we will choose
generates a nonuniform rotation pattern in the director reina particular geometry for our analyses which includes a slab
forcing the opposite rotations of the neighboring regions ofwith dimensionsa along thex axis, b along they axis, and

the sample. They were able to show that by this mechanisrd along thez axis, in such a way thaa>b>d. In our

the wall formation has an effective lower viscosity than theanalysis, the director is previously prepared in such a way
matter movement forming the homogeneous alignnfight  that it is initially uniformly aligned along the& direction.
One important characteristic of these structures is that thepn external controlled magnetic field is applied along the
appear as a periodic one-dimensional pattern perpendiculgraxis. In order to describe the texture produced in the nem-
to the external magnetic field. It was shown that this periodatic material, we will assume that the components of the

icity follows directly from its dimensiorj12]. director could be expressed by the planar geometry
Even though the formation of these structures is well un-
derstood both theoretically and experimentdiy13,14, a ny=cos(x,y,2), ny=sind(x,y,z), n,=0, (1)

careful analysis of the matter flow geometry taking into ac-

count'the effect of the boundary cond!tlons |s.st|II.needed. S&ghere 8(x.y.2) is the angle between the directérand the

far this phenomenon has been studied, taking into accou L

: : . e, direction.

the bulk properties, and has not considered the physics at thé& . . .
. The expression of the total free energy in the two elastic

edges of the sample. For example, it is known that the mattecrOnstant approximationk(;= K43, taking into account the

movement in the direction perpendicular to the magneticma netic-fiperl)d counlin i$11_3]3 ' 9

field must be restricted to the neighborhoods of the sample 9 ping. e,

edgeqd 5], but a clear analysis of the causes and influences of

this perpendicular matter movement on the director profile is
Perp P F= fv{% Kad (3x0)2+(d,0)%]+ 3 Koo 9,6)?

*Electronic address: simoes@npd.uel.br — 3 xH?%sirt6}dv, 2)
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whereK;, Ky,, andKs; are the elastic constants of splay,

twist, and bend, respectively, and is the volume of the
sample.

The motion of the nematic fluid will be described using

the anisotropic version of the Navier-Stokes equation

|

wherep is the density of the systerw,, the « component of
the velocity, p is the pressure, andg, is the associated
anisotropic stress tensfi6].

Finally, the equation for the motion of the director will be
represented gdl 5]

Ny IV,

W-ﬁ-vﬁ Wﬁ (3)

J
+— (= +
&Xﬁ( pﬁaﬁ O-Buz)v

o

d -
I r

=Ig+Tisc,

(4)

o

t

wherel is the moment of inertia per unit vqumé is the

local angular velocity of the directofF is the torque per
unite volume on the director due to the elastic forces, i.e.,

FF:ﬁXh,

(5
whereh is the molecular field1]; andfvisc is given by[15]

1:visc: — 71X '\]_ 'VZﬁXAT)n: (6)
whereN,=d,n,— (&x1),, @=5V XV, y, andy, are the
shear torque coefficients ad n is a notation for the scalar
product of the tensoA, ;= %(aaVBJr dgV,) with the vector

A [1,15,14. We will also consider, as usual, the fluid incom-
pressible

9o Va=0. 7)

The conditiona>b>d will allow us to restrict our dy-
namical analysis to thex(y) plane, and work with an ap-
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In the planar geometry so far defined, E4) becomes
Idt20+ y10:0= 71ny_ 72[Axy( n>2<_ ni) +(Axx— Ayy) nxny]
+Kad (350) +(350)]+ Koo 376)

+xaH?n,ny,

C)

whereA,, was defined above antl,,= (), — dyVy).

Ill. BEGINNING OF THE PROCESS

Suppose that the magnetic field is turned on just above,
but not far from, the Fredericksz threshold. There will be a
time interval close enough to the initial instant in such a way
that the bending of the director and the matter movement
will be very small. Thus we can consider

0= a(t)cokx sm(By)sm(az), df =0,
In this approximation, Eq9) gives
vidia=Fa, (11
whereF = (y,H?— K3d k?+ (/b)) 2] — K (7 d)?).
Therefore we have
a=ageFMt (12

which shows us that the fluctuations will grow exponentially
to F>0, and will be exponentially damped otherwise. The
maximum of this exponential growtl— 0, reflects the cel-
ebrated homogeneous Egdericksz transitiof17]. It should
be noted that this exponential growth is governed by the
coefficient y;. As will be shown further, the nonhomoge-
neous director bending only happens due to a reduction in
the viscosity coefficient via the existence oka 0 which
maximizes the exponential grow{b].

With this result we can study the geometry of the nematic
fluid matter in these initial instants. With these approxima-
tions, Eq.(8) becomes

proximation that, even after the turning on of the magnetic

field, there will be no matter motion along t& direction,

that isV,=0 andn,=0. Thus, the known phenomenology
happening along the, direction will not be considered here
[13,14). Furthermore we will consider that the velocity of the

matter in the sample is such that we can neglect the nonline&Y imposingV, =1, =0 att=0, we have

term in the Navier-Stokes equation. In this way, using Eq.
(7) and computing the stress tensor in the small bending

approximation, the two components of Eg) become

PAVe=— 05+ (A= AQ) d2Vy+ Agd2V,+ AgdZV,+ Ay, 6,
(8)

A .

paVy=— 3P+ (As—Ag) J2V,+ Agd2V + %’aivy+A7axa,
where A,=3(ay+ ays+as),
As=3(astastag), Aj=az, As=as As=3(a1—a;
+as5), A;=a,, and a; are the Leslie coefficient§l].

A1: a'1+ a4+ a'5+ ag,

pAV,=A4dy 0,
PV, =As0,0. (13
V,=—apAs(e™ 71— 1)cokx co zy sin =7
b b d)’
(14
r r
Vy= —kaoAg(eF ") —1)sinkx sin(By) sin(az .
(15

So in the initial moments the velocities increase exponen-
tially, and at the center of the samplaroundy~b/2) we
haveV,~0. Therefore the matter movement at these points
is restricted to thee direction. Furthermore, for thé\-
(p-methoxybenzylidenep-butylaniline (MBBA), for ex-
ample, we haveA,/A,~10? which, by Eq.(13), im-
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plies that any attempt to put the fluid in movement will havethat links the solutions of Eq$16) and (17). Suppose that
a reaction in the; direction that overcomes the one in tfle  the director has a small bending and strong anchoring at the

direction by this same value. surface, in such a way th#@can take the form
o o
IV. MATTER FLOW 0= a cokx sin By sin EZ' (26)

In this section we will obtain an exact solution for the
linearized anisotropic Navier-Stokes equation given in EqBy putting Egs.(19) and (20) into Egs.(16) and (17), we
(8). We will suppose that the exponential increase of thepptain
velocity shown above is such that we can neglect the terms

aV, and d;),, so that the equations for the matter flow
become [Asaicw)—[(Al—Az)k%As

T 2
a) }C(y)]vx

(A1—A2) 3V, + Agd?V,+ Agd?V, = 3, p— A4, 0, (16) m

T .
=kp0P(y)—BA4a cosby, (27

2 2 As , y
(AS_Az)UI)yVy‘i‘AG&XVy_F 70”ZVy:0"yp_A7aX0, (17)

2 2 A5 ar 2
(As=A2)dyS(y) = | Ask™+ —-| 7| [SY) [ Vy
Vet 0y, =0. (18)
. . T
As we have three linear equations and three unknown vari- =PodyP(y) +kAza siny. (28

ables(the two components of the velocity and the pressure

this system has a solution. Its boundary conditions must asat this point our system is composed of the E(4), (25),
sert that the fluid motion is absent at the boundaries of the27) and(28), subjected to the boundary conditions given in
sample18]. In this way we will consider that the solution of Eq.(22). To solve it we differentiate the result of the substi-
this set of differential equations has the following forms:  tytion of Eq.(24) in Eq. (27) in relation toy, and use Egs.
(25) and (28) to obtain

V=V, cokxC(y)sin gz) (19 -
{240yS(y) —a,7;S(y) + aoS(y)}Vy=aa sin Ly, (29)
- . W
W=Vy S'”kxs(y)s'”(az)' 20 where a;=As,  ay=[(A;+As—2A K2+ Ag(mld)?],
ap=kK{Agk’+ (Ag/2) (m/d)?], and  a=K[A,(m/b)?
i . o _A7k2].
P=P, sinkxP(y)sin 3% (21) Thus we have reduced our problem to only one linear

differential equation with the boundary conditions
whereC(y), S(y), andP(y) will be found using the equa-

tions above and the boundary conditions S(0)=S8(b)=0,
C(0)=C(b)=0, S'(0)=S'(b)=0, (30
S(0)=S(b)=0. (22 whose solution, satisfying these boundary conditions, is
given by

It should be noted that along tf& direction periodic bound-

ary conditions are imposed which, together with the hypoth- . ™ b
esisa>b>d, allow us to consider a system infinitely longer S(y)=sin pY*t Cicos hpl¥—2
along this direction, leading to a quasicontinuous spectrum to

K. ™
We begin by using the continuity equation. By inserting +CZCOS)’{ gZE(y 5)] (3
Egs.(19) and(20) into Eq.(18), we obtain
where
Vyays(y) - kaC(Y) =0, (23) 1 1
and by supposing th&(y) andC(y) satisfy the relation Ci= - p e
cosh glE] gltam{ glE] —gztanr{ 925]
o
dyS(Y) =15 C¥), (24)
C,= ! ! (32
and the equation of the continuity becomes 2 T T |’
cosh ng gotan 925 —g;tan 915
7T
—kV,+ b V,=0, (25 with
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a,++a5—4a,ag

2a,

a,— \/az2 —4a,a

2a,

12 S(y)

12

0.5
andV,=Ga, whereG=al[a,(m/b)*+ay(7/b)?+ag].

In this solution the sine term is the solution of the inho-
mogeneous equation given in EQ9). The remaining terms
arise from the solution of its homogeneous p&t.andC,
are chosen in such a way that the sum of the homogeneou: Y

. L " (a) 0.5 1.0

and inhomogeneous parts satisfies the boundary conditions
given in Eq.(29). Cly)

By having the exact solution of EqR9), we can evaluate 1.0
the fluid flow inside the sample. In the example below we
will use the Leslie coefficients of MBBA, and will consider

k?=1(w/d)2. This choice fork? is arbitrary. The right way
for choosingk? will be reviewed below[5]. With these

choices we findy;=1(b/d) andg,=2(b/d). In Fig. 1 the
corresponding graphics f&(y) andC(y) are shown. In this
picture it can be noticed that in the center of the sample the
fluid movement prevails along th&, direction, while at the
borders the movement along tlg¢ direction increases. The
pressure resulting in the sample can be easily evaluated by-1.0
using Eq.(27). (b)
In spite of the fact that Fig. 1 is impressive, it does not
show the one-dimensional character of the walls clearly. As FIG. 1. (a) Profile of the functionS(y) along the direction par-
was observed by Lombet al.[5], the fluid flow along the a!lel to _the external magnetlc fn_alas(y), defined in _Eq.(20), is a
&, direction must be localized at the edges of the sample, angimensionless quantity proportional to the velocity along &e
this is not shown by this figure. Indeed there is only Onedlrectlon. For theg direction arbitrary length unities were used.
point where the fluid flow is not present along tBgdirec-
tion: exactly at the center of the slab. We will show that the
origin of this shortcoming lies on the profile of the director
bending given in Eq(26). _A)S we a_ssu'med ,thdu>d’ .there along theé; direction. For thes; direction arbitrary length unities
must_be aregion along treg dl_rec_;tlon In Wh'ch the dlrectc_)r were used. As we see in E@4), this picture is a derivative aB);
bending is constarltl], and this is not described by a sine yherefore, the velocity along the; direction increases from the
function. That is, the term simfy/b) that appears in Eq26)  center of the sample to its borders. Meanwhile, due to the boundary
is a poor approximation of the description of the directorconditions, it returns to zero at the sample edges. As it predicts fluid
bending along the; direction, and must be replaced by a motion of the bulk in the direction perpendicular to the external
new function. Therefore magnetic field, this profile cannot explain the observed one dimen-
sionality of the walls. As observed by Lombeeg al. [5], the ve-

Notice that the maximum of the velocity, at the center of the
sample, stays in a pointb) Profile of the functionC(y) along the
direction parallel to the external magnetic field(y), defined in
Eqg. (19), is a dimensionless quantity proportional to the velocity

LT locity along this direction must be localized at the edges of the
0= a cokx(y)sin EZ’ (33 sam)é)le. 9 9
where {a4d3S(y) — ,02S(y) +aoS(y)}V,
sin2—7T|y, o<y<I = —b,322(y) —boX.(y), (35

whereby= ak®A; andb,= akA,.
(y)=¢ L I<y<b-l (34 The solution of this equation is similar to the one found in

Eqg. (31), and is given b
sinz—ﬂl-(b—y), b—I<ys<b; 9. (3D g y

_ ai B

| is the portion along the; direction where we have the S(y)—E(y)+Clcosr*gl b (y 2)]
bending in the director direction up to a constant value. In
the intervall<sy<b—I| we have the constant bending along _ E

. . y . (36)
the & direction. 2

In this case all the calculations follow the same path of _ .
the preceding one, and the equation corresponding to the Etlow V|, C;, andC;, are not exactly the same given above
(29) becomes in EQ. (32). In order to guarantee the continuity of E¢$9)

~ ar
+ C'zcosr{ 92
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$(y) tion increases, the velocity profile of the fluid along e
direction becomes more and more concentrated on the edges
of the sample. Actually it is not difficult to see from figures
1 and 2 that there is fluid motion along tBgdirection only
in the portions of the sample where there is the bending
portion of 2 (y). So as the flat portion af (y) increases the

0.5 fluid flow along the€, direction becomes more and more

concentrated on the edges of the sample.

V. DIRECTOR BENDING

Here we discuss how the picture presented previously acts

(a) 0.5 1.0 on the bending of the director along the sample. Equa®®n
<) and the fact that the inertial terms can be neglected will be
1.0 our assumptions. Furthermore we will retain the linear
terms only. So
0.5
y10di0= 71ny_ 72Axy_ Yo Axx— Ayy) 0
1.0
— —y +Kad (920) +(050) 1+ Koo 9260) + xaH?0.
(37
©.3 Our first step is the computation of the terMb,, A,
andA,,—A,,, for which we find
-1.0
(b)

Wiy = (1/2k) Vycokx(k2S— 35 S)sin(mr/d 2);
FIG. 2. (a) Profile of the functionS(y) along the direction par-
allel to the external magnetic field when it is assumed, as described
in Egs. (33) and (34), that at the sample center the director has a

saturated portion along th& direction. S(y), defined in Eq(20),

is a dimensionless quantity proportional to the velocity alongghe
direction. For theg; direction arbitrary length unities were used.
Notice that now the velocity along thg direction has a saturated Axx_Ayy: zvy(w/b)sinkxc(y)sir{(ﬂ-/d) z].
portion. In this picture we useéafd= 10 andl/b=0.1. (b) Profile of

the functionC(y) along the direction parallel to the external mag- Furthermore, we notice that

netic field. C(y), defined in Eq.(19), is a dimensionless quantity

proportional to the velocity along th& direction. For theg; direc- -
tion arbitrary length unities were used. As we see in 24), this . _1 . .
function is the derivative of the function plotted in Figa2 Notice Wy~ A=z (1 72)kVyCOSkXS(y)SIn( d Z)
that the fluid motion along the, direction is displaced to the edges
to afford an understanding of the one-dimensional pattern of the
walls.

Asy= (LK) V,cokx(k?S+ 35S)sin (mr/d) z]

and

1 g [T
= o (72 + 72)kVycoskxayS sin 5 z|.

38
and(20), these constants depend on the intervals considered. 39
We usei=1 to the symmetric intervals ®y<I| and Buty;—y,=—2a,; y1+v,=2az, and|a,|>|a;| (for the
b—l<y<b, and i=2 to the interval Isy<b—I. MBBA |ay|~10% as|) as well as&iSis relevant only in the
Indeed in the intervals for which=1 it is enough to make neighborhoods of the sample edges, where we have
the changeb—2l in Eq. (32) in order to obtain the d;S=S(y). So we have
new constants. In the interval for whichi=2

we haveV2=—b,/ag,C3=Cl+(L/2V})(AV,/AG,) and ) A

C3C3 —(1/2V)) (AVy/AG,), whereAV,=V.-V}, AG, Y1Way = Y2Ay=7 (71— Vz)kVyCO*XS(Y)S'”<aZ) 1

= (1U/sh)[(91/92) (chy/shp) — (chy /shy) ], AG,=(1/shy) (39
X[(92 /g91)(ch/shy)] —(chy/shy)), and sh=sinHgn/b

X (I—b/2)], ch=coshga/b(l—b/2)]. and use Fig. 2 and E¢36) to see thaB(y) is well described

In Fig. 2 we plot one solution foS(y) and C(y) for by 3(y) because it fits very well the velocity of the fluid
I=0.1. Notice that, in this figure, we have normalized thealong theg; direction, as well as its boundary condition that
interval b to 1. Thel represents the fraction of the interval at the edges. The function of the inhomogeneous term in Eq.
(0,b) in which there is a bending of the director along &e  (36) is just to furnish the appropriated boundary conditions
direction. From Eq(24) it is easy to see that, aglecreases, to its derivative[see Eq(24)], which does not appear in Eq.
or as the constant portion of the director along &elirec-  (39). Thus
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| 1.0
71ny_ ')’2Axyz %( Y1~ 72)kVy COSkXE(Y)Sm( EZ)

(7
:%(71_’)’2)kVy;- (40)
0.5

By defining F6=Kad (9560) +(9760) 1+ KA 5 6) + xaH?,

we obtain, forF, ¢ LCW
A
2 ™\ 2 )2 QRN
F=xaH"—1Kag | 57| 61tk =Kyl =] (, (4D L
21) " d 0.25 05 ¥
whered; ;=1 if the interval under consideration is the inter-  F|G. 3. Superposition of the curve(y) and as a function of
val i=1 defined in Eq(31), and O otherwise. the direction parallel to the external magnetic field. The dashed
We then obtain curve represents the dimensionless quar@ity), and the continu-

ous curve represents(t) in arbitrary unities. Notice a reduction in
the amplitude growth speed, given l(t), just at the regions
where the velocity of the fluid along th& direction is present.

yia=}(y1— y2)kGa— 2y2(%) sinka(y)sin(gz) Gair

+Fa, (42)
So, with Eq. (43), we can study the influence of the
where we used Eq32). So this equation can be rewritten as sample edges in the development «ft). Notice that ex-
, ) actly at the edges we have(=0 and, as we go along t&
at+Maa—Fa=0 (43 direction, M grows and returns to zero when it reaches dis-
tancel from the border of the sample. As we see in Fig. 2,

where this localized peak is due to the matter flux along &e

direction that, as seen in E(9), presents this same behav-

2y2(z)sinka(y)sin(zz)G ior. In Fig. 3 this is illustrated with a superposition of the

_ b d 44 profiles of a(t) and C(y) near the edges of the sample for
M= ’ 449 the instant at whickre’'=1.

717%(71_ ¥2)kG
= VI. CONCLUSION
F= (g kG (45 In this work we studied the geometry of the matter flow of
NnT2inT %2 a NLC sample as an external magnetic field is turned on

The solution of this equation is given by the transcenden@bove the Fredericksz threshold perpendicular to the initial

tal expression direction of the planar director. After the linear anisotropic
Navier-Stokes equation of the problem was analytically
a(t)eMV=¢ge, (46)  solved, the role of the boundary conditions in the matter flow
was studied. It was shown that, like the anisotropy of the
wheree is a constant of integration. viscosity coefficients, the geometry of the sample has a fun-

This is a generalization of the result found by Lombergdamental importance in the understanding of the walls one-
et al.[5], taking into account the effect of the boundary con-dimensional patterns. This happens because a saturated por-
ditions on the time development of the amplituglet). That  tion of the director along the direction of the external
is, as M depends onx,y,z) the growth ofa(t) is not con-  magnetic field is required. It is also shown that the matter
stant throughout the sample. By looking at Fig. 2, and conmovement, in the direction perpendicular to the magnetic
sidering thatC(y) can not be zero only in the neighborhoods field, is restricted to the neighborhoods of the edges of the
of the edges of the sample, we conclude that in the bulk theample where the bending of the director is not constant.
growth of the amplituder is given by a(t)=ce’*. Notice With these results, the equation of the director bending
that the maximum growth rate in this exponential is notwas solved in the entire sample. We show that the magnitude
given by k=0. As we pointed out in Eq(12), and clearly of the sample dimensions ratios guarantees that, in the cen-
showed in Eq(45), there is a reduction i, which grows tral portion of the sample, the result of Lombeagal.[5] is
with k. The value ofk that affords the maximum growing recovered. Meanwhile in the neighborhoods of the sample
rate in Eq.(43) is the one chosen by the system. If, in this edges, the time amplitude growth is reduced due to the mat-
equation, we makel2-b and use the fact thdt>d we will ter flow in the direction perpendicular to the external mag-
see thatF assumes the form found by Lombeggal. [5]. netic field.
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