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One-dimensional walls in liquid crystals

M. Simões*
Departamento de Fisica, Universidade Estadual de Londrina, Campus Universitario, 86051-970 Londrina, PR, Brazil

~Received 7 April 1997!

We study the geometry of the matter flow which leads to the formation of one-dimensional walls above the
magnetic Fre´edericksz threshold in some nematic materials. The corresponding anisotropic Navier-Stokes
equation, subject to the appropriate boundary conditions, is solved. We show analytically that the one-
dimensional nature of the observed walls arises from the combination of the planar geometry of the director,
imposed before the magnetic field is turned on, the anisotropic viscosity of the nematic material, and the
saturated profile of the director along the direction of the magnetic field. The matter flow along the direction
perpendicular to the magnetic field is analytically studied, and the conditions that restrict it to the edge of the
sample are shown. The influence of this transverse flow of matter on the bending profile of the director is also
analyzed.@S1063-651X~97!10509-8#

PACS number~s!: 61.30.Gd, 61.30.Jf, 64.70.Md
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I. INTRODUCTION

Walls are the structures usually found in nematic liqu
crystals~NLC’s!, formed under the action of an external fie
@1# that makes the transition between adjacent symmetr
distorted textures. They have been widely investigated fr
both theoretical and experimental points of view@2–9#. Their
practical importance, besides being typical examples of
tures in NLC’s, lies on the fact that under simple experime
tal conditions the measurements of their parameters
show the elastic constant values as well as the magnetic
ceptibility of the NLC @10,11#.

When a magnetic field is used as the external induc
these walls arise from the combined action of the exter
field and the matter movement that happens as soon a
magnetic field is turned on above the Fre´edericksz threshold
In a remarkable work, Lonberget al. @5# showed how this
interesting mechanism works: the external magnetic field
tates the director stimulating the fluid flow, which in tu
generates a nonuniform rotation pattern in the director re
forcing the opposite rotations of the neighboring regions
the sample. They were able to show that by this mechan
the wall formation has an effective lower viscosity than t
matter movement forming the homogeneous alignment@5#.
One important characteristic of these structures is that t
appear as a periodic one-dimensional pattern perpendic
to the external magnetic field. It was shown that this peri
icity follows directly from its dimension@12#.

Even though the formation of these structures is well
derstood both theoretically and experimentally@5,13,14#, a
careful analysis of the matter flow geometry taking into a
count the effect of the boundary conditions is still needed.
far this phenomenon has been studied, taking into acco
the bulk properties, and has not considered the physics a
edges of the sample. For example, it is known that the ma
movement in the direction perpendicular to the magne
field must be restricted to the neighborhoods of the sam
edges@5#, but a clear analysis of the causes and influence
this perpendicular matter movement on the director profil
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still to be carried out. Furthermore, it has been observed
walls formed under these conditions are one dimensio
But what are the characteristics of the system that make th
striking patterns possible? Lonberget al. stressed the role o
the anisotropy in the viscosity coefficients. In the pres
study we stress the importance of the director profile alo
the direction of the magnetic field. We will solve the anis
tropic linear Navier-Stokes equation with the appropria
boundary conditions, supposing that the matter movemen
restricted to the plane of the sample. With this solution
will be able to study the director bending profile througho
the sample.

II. FUNDAMENTALS

Considering that NLC’s can be described by a continu
model whose elastic energy is given by the Frank free ene
@1#, and whose motion is described by the so-called Ericks
Leslie, and Parodi~ELP! approach@1,15,16#, we will choose
a particular geometry for our analyses which includes a s
with dimensionsa along thex axis,b along they axis, and
d along thez axis, in such a way thata@b@d. In our
analysis, the director is previously prepared in such a w
that it is initially uniformly aligned along theexW direction.
An external controlled magnetic fieldH is applied along the
y axis. In order to describe the texture produced in the ne
atic material, we will assume that the components of
director could be expressed by the planar geometry

nx5cosu~x,y,z!, ny5sinu~x,y,z!, nz50, ~1!

whereu(x,y,z) is the angle between the directornW and the
exW direction.

The expression of the total free energy in the two elas
constant approximation (K115K33), taking into account the
magnetic-field coupling, is@1,3#

F5E
V
$ 1

2 K33@~]xu!21~]yu!2#1 1
2 K22~]zu!2

2 1
2 xaH2sin2u%dV, ~2!
3061 © 1997 The American Physical Society
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3062 56M. SIMÕES
whereK11, K22, andK33 are the elastic constants of spla
twist, and bend, respectively, andV is the volume of the
sample.

The motion of the nematic fluid will be described usin
the anisotropic version of the Navier-Stokes equation

rS ]Va

]t
1Vb

]Va

]xb
D1

]

]xb
~2pdab1sba!, ~3!

wherer is the density of the system,Va thea component of
the velocity, p is the pressure, andsba is the associated
anisotropic stress tensor@16#.

Finally, the equation for the motion of the director will b
represented as@15#

I
dVW

dt
5GW F1GW visc, ~4!

whereI is the moment of inertia per unit volume;VW is the

local angular velocity of the director;GW F is the torque per
unite volume on the director due to the elastic forces, i.e

GW F5nW 3hW , ~5!

wherehW is the molecular field@1#; andGW visc is given by@15#

GW visc52g1nW 3NW 2g2nW 3A•nW , ~6!

whereNa5dtna2(vW 3nW )a , vW 5 1
2 ¹W 3VW , g1 andg2 are the

shear torque coefficients andA•nW is a notation for the scala

product of the tensorAab5 1
2 (]aVb1]bVa) with the vector

nW @1,15,16#. We will also consider, as usual, the fluid incom
pressible

]aVa50. ~7!

The conditiona@b@d will allow us to restrict our dy-
namical analysis to the (x,y) plane, and work with an ap
proximation that, even after the turning on of the magne
field, there will be no matter motion along theezW direction,
that is Vz50 andnz50. Thus, the known phenomenolog
happening along theezW direction will not be considered her
@13,14#. Furthermore we will consider that the velocity of th
matter in the sample is such that we can neglect the nonli
term in the Navier-Stokes equation. In this way, using E
~7! and computing the stress tensor in the small bend
approximation, the two components of Eq.~3! become

r] tVx52]xp1~A12A2!]x
2Vx1A3]y

2Vx1A3]z
2Vx1A4]yu̇,

~8!

r] tVy52]yp1~A52A2!]y
2Vy1A6]x

2Vy1
A5

2
]z

2Vy1A7]xu̇,

where A15a11a41a51a6 , A25 1
2 (a21a41a5),

A35 1
2 (a31a41a6), A45a3 , A55a4, A65 1

2 (a12a2

1a5), A75a2 , and a i are the Leslie coefficients@1#.
c

ar
.
g

In the planar geometry so far defined, Eq.~4! becomes

Idt
2u1g1dtu5g1Wxy2g2@Axy~nx

22ny
2!1~Axx2Ayy!nxny#

1K33@~]x
2u!1~]y

2u!#1K22~]z
2u!

1xaH2nxny , ~9!

whereAxy was defined above andWxy5
1
2 (]xVy2]yVx).

III. BEGINNING OF THE PROCESS

Suppose that the magnetic field is turned on just abo
but not far from, the Fre´edericksz threshold. There will be
time interval close enough to the initial instant in such a w
that the bending of the director and the matter movem
will be very small. Thus we can consider

u5a~ t !coskx sinS p

b
yD sinS p

d
zD , dt

2u.0,

Wi j .Ai j .0. ~10!

In this approximation, Eq.~9! gives

g1dta5Fa, ~11!

whereF5„xaH22K33@k21(p/b)2#2K22(p/d)2
….

Therefore we have

a5a0e~F/g1!t , ~12!

which shows us that the fluctuations will grow exponentia
to F.0, and will be exponentially damped otherwise. T
maximum of this exponential growth,k→0, reflects the cel-
ebrated homogeneous Fre´edericksz transition@17#. It should
be noted that this exponential growth is governed by
coefficient g1 . As will be shown further, the nonhomoge
neous director bending only happens due to a reductio
the viscosity coefficient via the existence of akÞ0 which
maximizes the exponential growth@5#.

With this result we can study the geometry of the nema
fluid matter in these initial instants. With these approxim
tions, Eq.~8! becomes

r] tVx5A4]yu̇,

r] tVy5A7]xu̇. ~13!

By imposingVx5Vy50 at t50, we have

Vx5
p

b
a0A4~e~F/g1!t21!coskx cosS p

b
yD sinS p

d
zD ,

~14!

Vy52ka0A8~e~F/g1!t21!sinkx sinS p

b
yD sinS p

d
zD .

~15!

So in the initial moments the velocities increase expon
tially, and at the center of the sample~aroundy'b/2! we
haveVx'0. Therefore the matter movement at these poi
is restricted to theeyW direction. Furthermore, for theN-
~p-methoxybenzylidene!-p-butylaniline ~MBBA !, for ex-
ample, we haveA7 /A4'102, which, by Eq. ~13!, im-
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56 3063ONE-DIMENSIONAL WALLS IN LIQUID CRYSTALS
plies that any attempt to put the fluid in movement will ha
a reaction in theeyW direction that overcomes the one in theexW
direction by this same value.

IV. MATTER FLOW

In this section we will obtain an exact solution for th
linearized anisotropic Navier-Stokes equation given in E
~8!. We will suppose that the exponential increase of
velocity shown above is such that we can neglect the te
] tVx and ] tVy , so that the equations for the matter flo
become

~A12A2!]x
2Vx1A3]y

2Vx1A3]z
2Vx5]xp2A4]yu̇, ~16!

~A52A2!]y
2Vy1A6]x

2Vy1
A5

2
]z

2Vy5]yp2A7]xu̇, ~17!

]xVx1]yVy50. ~18!

As we have three linear equations and three unknown v
ables~the two components of the velocity and the pressu!,
this system has a solution. Its boundary conditions must
sert that the fluid motion is absent at the boundaries of
sample@18#. In this way we will consider that the solution o
this set of differential equations has the following forms:

Vx5Vx coskxC~y!sinS p

d
zD , ~19!

Vy5Vy sinkxS~y!sinS p

d
zD , ~20!

p5po sinkxP~y!sinS p

d
zD , ~21!

whereC(y), S(y), andP(y) will be found using the equa
tions above and the boundary conditions

C~0!5C~b!50,

S~0!5S~b!50. ~22!

It should be noted that along theexW direction periodic bound-
ary conditions are imposed which, together with the hypo
esisa@b@d, allow us to consider a system infinitely long
along this direction, leading to a quasicontinuous spectrum
k.

We begin by using the continuity equation. By inserti
Eqs.~19! and ~20! into Eq. ~18!, we obtain

Vy]yS~y!2kVxC~y!50, ~23!

and by supposing thatS(y) andC(y) satisfy the relation

]yS~y!5
p

b
C~y!, ~24!

and the equation of the continuity becomes

2kVx1
p

b
Vy50, ~25!
.
e
s

ri-

s-
e

-

to

that links the solutions of Eqs.~16! and ~17!. Suppose that
the director has a small bending and strong anchoring at
surface, in such a way thatu can take the form

u5a coskx sin
p

b
y sin

p

d
z. ~26!

By putting Eqs.~19! and ~20! into Eqs. ~16! and ~17!, we
obtain

H A3]y
2C~y!2F ~A12A2!k21A3S p

d D 2GC~y!J Vx

5kpoP~y!2
p

b
A4ȧ cos

p

b
y, ~27!

H ~A52A2!]y
2S~y!2FA6k21

A5

2 S p

d D 2GS~y!J Vy

5po]yP~y!1kA7ȧ sin
p

b
y. ~28!

At this point our system is composed of the Eqs.~24!, ~25!,
~27!, and~28!, subjected to the boundary conditions given
Eq. ~22!. To solve it we differentiate the result of the subs
tution of Eq.~24! in Eq. ~27! in relation toy, and use Eqs.
~25! and ~28! to obtain

$a4]y
4S~y!2a2]y

2S~y!1a0S~y!%Vy5aȧ sin
p

b
y, ~29!

where a45A3 , a25@(A11A522A2)k21A3(p/d)2#,
a05k2@A6k21 (A5/2) (p/d)2#, and a5k@A4(p/b)2

2A7k2].
Thus we have reduced our problem to only one line

differential equation with the boundary conditions

S~0!5S~b!50,

S8~0!5S8~b!50, ~30!

whose solution, satisfying these boundary conditions,
given by

S~y!5sin
p

b
y1C1coshH g1

p

b S y2
b

2D J
1C2coshH g2

p

b S y2
b

2D J , ~31!

where

C15
1

coshH g1

p

2 J
1

g1tanhH g1

p

2 J 2g2tanhH g2

p

2 J ,

C25
1

coshH g2

p

2 J
1

g2tanhH g2

p

2 J 2g1tanhH g1

p

2 J , ~32!

with
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3064 56M. SIMÕES
g15
b

p
S a21Aa2

224a4a0

2a4
D 1/2

,

g25
b

p
S a22Aa2

224a4a0

2a4
D 1/2

,

andVy5Gȧ, whereG5a/@a4(p/b)41a2(p/b)21a0#.
In this solution the sine term is the solution of the inh

mogeneous equation given in Eq.~29!. The remaining terms
arise from the solution of its homogeneous part.C1 andC2
are chosen in such a way that the sum of the homogen
and inhomogeneous parts satisfies the boundary condi
given in Eq.~29!.

By having the exact solution of Eq.~29!, we can evaluate
the fluid flow inside the sample. In the example below
will use the Leslie coefficients of MBBA, and will conside

k2. 1
2 (p/d)2. This choice fork2 is arbitrary. The right way

for choosing k2 will be reviewed below@5#. With these

choices we findg1. 1
2 (b/d) and g2.2(b/d). In Fig. 1 the

corresponding graphics forS(y) andC(y) are shown. In this
picture it can be noticed that in the center of the sample
fluid movement prevails along theeyW direction, while at the
borders the movement along theexW direction increases. The
pressure resulting in the sample can be easily evaluate
using Eq.~27!.

In spite of the fact that Fig. 1 is impressive, it does n
show the one-dimensional character of the walls clearly.
was observed by Lomberget al. @5#, the fluid flow along the
exW direction must be localized at the edges of the sample,
this is not shown by this figure. Indeed there is only o
point where the fluid flow is not present along theexW direc-
tion: exactly at the center of the slab. We will show that t
origin of this shortcoming lies on the profile of the direct
bending given in Eq.~26!. As we assumed thatb@d, there
must be a region along theeyW direction in which the director
bending is constant@1#, and this is not described by a sin
function. That is, the term sin(py/b) that appears in Eq.~26!
is a poor approximation of the description of the direc
bending along theeyW direction, and must be replaced by
new function. Therefore

u5a coskxS~y!sin
p

d
z, ~33!

where

S~y!55
sin

p

2l
y, 0<y, l

1, l<y,b2 l

sin
p

2l
~b2y!, b2 l<y<b;

~34!

l is the portion along theeyW direction where we have th
bending in the director direction up to a constant value.
the intervall<y<b2 l we have the constant bending alon
the eyW direction.

In this case all the calculations follow the same path
the preceding one, and the equation corresponding to the
~29! becomes
us
ns

e

by

t
s

nd
e

r

n

f
q.

$a4]y
4S~y!2a2]y

2S~y!1a0S~y!%Ṽy
i

52b2]y
2S~y!2b0S~y!, ~35!

whereb05ȧk3A7 andb25ȧkA4 .
The solution of this equation is similar to the one found

Eq. ~31!, and is given by

S~y!5S~y!1C̃1
i coshH g1

p

b S y2
b

2D J
1C̃2

i coshH g2

p

b S y2
b

2D J . ~36!

Now Ṽy
i , C̃1

i , andC̃2
i are not exactly the same given abo

in Eq. ~32!. In order to guarantee the continuity of Eqs.~19!

FIG. 1. ~a! Profile of the functionS(y) along the direction par-
allel to the external magnetic field.S(y), defined in Eq.~20!, is a
dimensionless quantity proportional to the velocity along theeyW
direction. For theeyW direction arbitrary length unities were use
Notice that the maximum of the velocity, at the center of t
sample, stays in a point.~b! Profile of the functionC(y) along the
direction parallel to the external magnetic field.C(y), defined in
Eq. ~19!, is a dimensionless quantity proportional to the veloc
along theexW direction. For theeyW direction arbitrary length unities
were used. As we see in Eq.~24!, this picture is a derivative of~a!;
therefore, the velocity along theexW direction increases from the
center of the sample to its borders. Meanwhile, due to the boun
conditions, it returns to zero at the sample edges. As it predicts fl
motion of the bulk in the direction perpendicular to the extern
magnetic field, this profile cannot explain the observed one dim
sionality of the walls. As observed by Lomberget al. @5#, the ve-
locity along this direction must be localized at the edges of
sample.
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56 3065ONE-DIMENSIONAL WALLS IN LIQUID CRYSTALS
and~20!, these constants depend on the intervals conside
We use i 51 to the symmetric intervals 0<y< l and
b2 l<y<b, and i 52 to the interval l<y<b2 l .
Indeed in the intervals for whichi 51 it is enough to make
the changeb→2l in Eq. ~32! in order to obtain the
new constants. In the interval for whichi 52
we haveṼy

252b0 /a0 ,C̃1
25C̃1

11(1/2Ṽy
1)(DVy /DG1) and

C̃2
2C̃2

1 2(1/2Ṽy
1) (DVy /DG2), whereDVy5Ṽy

12Ṽy
2 , DG1

5(1/sh1)@(g1 /g2)(ch2 /sh2)2(ch1 /sh1)#, DG25(1/sh2)
3@(g2 /g1)(ch1 /sh1)] 2(ch2 /sh2)), and shi5sinh@gip/b
3( l 2b/2)], chi5cosh@gip/b(l2b/2)#.

In Fig. 2 we plot one solution forS(y) and C(y) for
l 50.1. Notice that, in this figure, we have normalized t
interval b to 1. Thel represents the fraction of the interv
(0,b) in which there is a bending of the director along theeyW
direction. From Eq.~24! it is easy to see that, asl decreases
or as the constant portion of the director along theeyW direc-

FIG. 2. ~a! Profile of the functionS(y) along the direction par-
allel to the external magnetic field when it is assumed, as descr
in Eqs. ~33! and ~34!, that at the sample center the director has
saturated portion along theeyW direction.S(y), defined in Eq.~20!,
is a dimensionless quantity proportional to the velocity along theeyW
direction. For theeyW direction arbitrary length unities were use
Notice that now the velocity along theeyW direction has a saturate
portion. In this picture we usedb/d510 andl /b50.1. ~b! Profile of
the functionC(y) along the direction parallel to the external ma
netic field.C(y), defined in Eq.~19!, is a dimensionless quantit
proportional to the velocity along theexW direction. For theeyW direc-
tion arbitrary length unities were used. As we see in Eq.~24!, this
function is the derivative of the function plotted in Fig. 2~a!. Notice
that the fluid motion along theexW direction is displaced to the edge
to afford an understanding of the one-dimensional pattern of
walls.
d.

tion increases, the velocity profile of the fluid along theexW
direction becomes more and more concentrated on the e
of the sample. Actually it is not difficult to see from figure
1 and 2 that there is fluid motion along theexW direction only
in the portions of the sample where there is the bend
portion ofS(y). So as the flat portion ofS(y) increases the
fluid flow along theexW direction becomes more and mo
concentrated on the edges of the sample.

V. DIRECTOR BENDING

Here we discuss how the picture presented previously
on the bending of the director along the sample. Equation~9!
and the fact that the inertial terms can be neglected will
our assumptions. Furthermore we will retain the linearu
terms only. So

g1dtu5g1Wxy2g2Axy2g2~Axx2Ayy!u

1K33@~]x
2u!1~]y

2u!#1K22~]z
2u!1xaH2u.

~37!

Our first step is the computation of the termsWxy , Axy
andAxx2Ayy , for which we find

Wxy5~1/2k!Vycoskx~k2S2]y
2S!sin~p/d z!;

Axy5~1/2k!Vycoskx~k2S1]y
2S!sin@~p/d! z#

and

Axx2Ayy52Vy~p/b!sinkxC~y!sin@~p/d! z#.

Furthermore, we notice that

g1Wxy2g2Axy5
1
2 ~g12g2!kVycoskxS~y!sinS p

d
zD

2
1

2k
~g11g2!kVycoskx]y

2S sinS p

d
zD .

~38!

But g12g2522a2 ; g11g252a3 , andua2u@ua3u ~for the
MBBA ua2u;102ua3u! as well as]y

2S is relevant only in the
neighborhoods of the sample edges, where we h
]y

2S.S(y). So we have

g1Wxy2g2Axy.
1
2 ~g12g2!kVycoskxS~y!sinS p

d
zD ,

~39!

and use Fig. 2 and Eq.~36! to see thatS(y) is well described
by S(y) because it fits very well the velocity of the flui
along theeyW direction, as well as its boundary condition th
at the edges. The function of the inhomogeneous term in
~36! is just to furnish the appropriated boundary conditio
to its derivative@see Eq.~24!#, which does not appear in Eq
~39!. Thus

ed

e
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3066 56M. SIMÕES
g1Wxy2g2Axy.
1
2 ~g12g2!kVy coskxS~y!sinS p

d
zD

5 1
2 ~g12g2!kVy

u

a
. ~40!

By defining Fu5K33@(]x
2u)1(]y

2u)#1K22(]z
2u)1xaH2u,

we obtain, forF,

F5xaH22H K33F S p

2l D
2

d i ,11k2G2K22S p

d D 2J , ~41!

whered i ,151 if the interval under consideration is the inte
val i 51 defined in Eq.~31!, and 0 otherwise.

We then obtain

g1ȧ5 1
2 ~g12g2!kGȧ22g2S p

b D sinkxC~y!sinS p

d
zDGaȧ

1Fa, ~42!

where we used Eq.~32!. So this equation can be rewritten a

ȧ1Maȧ2Fa50 ~43!

where

M5

2g2S p

b D sinkxC~y!sinS p

d
zDG

g12
1
2 ~g12g2!kG

, ~44!

F5
F

g12 1
2 ~g12g2!kG

. ~45!

The solution of this equation is given by the transcend
tal expression

a~ t !eMa~ t !5«eFt, ~46!

where« is a constant of integration.
This is a generalization of the result found by Lombe

et al. @5#, taking into account the effect of the boundary co
ditions on the time development of the amplitudea(t). That
is, asM depends on (x,y,z) the growth ofa(t) is not con-
stant throughout the sample. By looking at Fig. 2, and c
sidering thatC(y) can not be zero only in the neighborhoo
of the edges of the sample, we conclude that in the bulk
growth of the amplitudea is given bya(t)5«eFt. Notice
that the maximum growth rate in this exponential is n
given by k50. As we pointed out in Eq.~12!, and clearly
showed in Eq.~45!, there is a reduction ing1 which grows
with k. The value ofk that affords the maximum growing
rate in Eq.~43! is the one chosen by the system. If, in th
equation, we make 2l→b and use the fact thatb@d we will
see thatF assumes the form found by Lomberget al. @5#.
-

-

-

e

t

So, with Eq. ~43!, we can study the influence of th
sample edges in the development ofa(t). Notice that ex-
actly at the edges we haveM50 and, as we go along theeyW
direction,M grows and returns to zero when it reaches d
tancel from the border of the sample. As we see in Fig.
this localized peak is due to the matter flux along theexW
direction that, as seen in Eq.~19!, presents this same beha
ior. In Fig. 3 this is illustrated with a superposition of th
profiles of a(t) and C(y) near the edges of the sample f
the instant at which«eFt51.

VI. CONCLUSION

In this work we studied the geometry of the matter flow
a NLC sample as an external magnetic field is turned
above the Fre´edericksz threshold perpendicular to the init
direction of the planar director. After the linear anisotrop
Navier-Stokes equation of the problem was analytica
solved, the role of the boundary conditions in the matter fl
was studied. It was shown that, like the anisotropy of
viscosity coefficients, the geometry of the sample has a f
damental importance in the understanding of the walls o
dimensional patterns. This happens because a saturated
tion of the director along the direction of the extern
magnetic field is required. It is also shown that the mat
movement, in the direction perpendicular to the magne
field, is restricted to the neighborhoods of the edges of
sample where the bending of the director is not constant

With these results, the equation of the director bend
was solved in the entire sample. We show that the magnit
of the sample dimensions ratios guarantees that, in the
tral portion of the sample, the result of Lomberget al. @5# is
recovered. Meanwhile in the neighborhoods of the sam
edges, the time amplitude growth is reduced due to the m
ter flow in the direction perpendicular to the external ma
netic field.

FIG. 3. Superposition of the curvesC(y) and as a function of
the direction parallel to the external magnetic field. The das
curve represents the dimensionless quantityC(y), and the continu-
ous curve representsa(t) in arbitrary unities. Notice a reduction in
the amplitude growth speed, given bya(t), just at the regions
where the velocity of the fluid along theexW direction is present.
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